If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36q^2-59=0
a = 36; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·36·(-59)
Δ = 8496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8496}=\sqrt{144*59}=\sqrt{144}*\sqrt{59}=12\sqrt{59}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{59}}{2*36}=\frac{0-12\sqrt{59}}{72} =-\frac{12\sqrt{59}}{72} =-\frac{\sqrt{59}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{59}}{2*36}=\frac{0+12\sqrt{59}}{72} =\frac{12\sqrt{59}}{72} =\frac{\sqrt{59}}{6} $
| -10/3=-5/6x | | 20=2x+3 | | 0.9t+0.99=0.9+1.90t | | 10.50a+307.50=2071.50 | | 7x−6x=6 | | -8.16=3t | | 83x+P=83x+Q= | | 2(3x+4)=6-(2x-5 | | x/4+2x=3x | | 2y=4y+2 | | 15.t=60 | | I3r-6I=21 | | 9p+20=7- | | j3+ 11=13 | | 3r=21R=7 | | 7v+v=42 | | 3^2n-2=9 | | -11-u=-10.74 | | z/7-3=6 | | 2x-8x=1+49 | | -11-u=10.74 | | `127=2x+17 | | 16^2x=64 | | Z/7x3=6 | | 100b^2+75b-9=0 | | -(2x-3)+4=23.8 | | -(2x-3)+4=-23.8 | | -10=-14+-2x/5 | | Y=2(x+5/2)(x+2) | | c/6=-5 | | 8n-22=5n+5 | | 9x+10=2x+24 |